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Numerical Solution of Steady-state Electromagnetic

Scattering Problems Using the Time-Dependent

Maxwell’s Equations

ALLEN TAFLOVE AND MORRIS E. BRODWIN, SENIOR MEMBER, IEEE

Absfracf—A numerical method is described for the solution of the
electromagnetic fields within an arbitrary dielectric scatterer of
the order of one wavelength in diameter. The m~thod treats the
irradiation of the scatterer as an hdtial value problem. At t = O,
a plane-wave source of frequency f is assumed to be turned on.
The diffraction of waves from this source is modeled by repeatedly
solving a dnite-dMerence analog of the time-dependent Maxwell%
equations. Time stepping is continued untif sinusoidusf steady-state
field valuee are observed at all points within the scatterer. The en-
velope of the standing wave is taken as the steady-state scattered
field. As an example of this method, the computed results for a
dielectric cylinder scatterer are presented. An error of less than
+10 percent in locating znd evaluating the standing-wave peaks
within the cylinder is achieved for a program execution time of 1min.
The extension of this method to the solution of the fields within
three-dimensionaf dielectric scatterers is outlined.

I. INTRODUCTION

T HE accurate determination of the electromagnetic

fields within an arbitrary, inhomogeneous, dielectric

scatterer is both an important theoretical problem and a

practical objective of workers investigating the effects of
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microwaves upon living tissue. Exact analyt; cal solutions

are obtained only for simple scatterers like the sphere and

the circular cylinder, which may be solved using separa-

tion of variables. For complicated scatterers like most body

organs, we must resort to some numerical method if an

accurate model is to be examined.

The computer techniques relevant to this problem that

have appeared in the literature may be called, as a class,

frequency-domain methods. These methods are based upon

the assumption of an exp (j2@) time dependence in the

fundamental Maxwell’s equations. In general, methods of

this type derive a set of linear equations for either field

variables or field expansion coefficients, and t Ihen solve the

linear system with a suitable matrix-inversion scheme.

Wu and Tsai [1] solve two-dimensional scattering by an

arbitrary dielectric cylinder. They develop a coupled in-

tegral equation pair for the electric field and its normal

derivative at the surface of the scatterer. The;y then derive

a corresponding set of linear equations for the surface

fields using the moment method of Barrington [2]. Solu-

tion of this set of equations allows computation of the in-
terior fields using Huygens’ integrals. This method allows

the very accurate solution of a homogeneous dielectric

cylinder, about one free-space wavelength in circumference,

by inverthgan 80-by-80 matrix.
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McDonald and Wexler [3] solve a two-dimensional radi-

ating antenna with dielectric obstacles. They employ a

finite-element solution of the Helmholtz equation within

a restricted region, and use an integral equation constraint

along the contour of this region to take into account the

unbounded exterior. Solution is obtained by inverting a 60-

by-60 matrix.

Wilton and Mittra [4] solve two-dimensional scattering

by an arbitrary dielectric cylinder. They expand the fields

inside and outside of the scatterer in terms of free-space-

type wave functions, wherever valid, and in terms of the

analytic continuation of these wave functions, wherever re-

quired. The unknown set of coeiiicients is determined by

enforcing the field boundary conditions at a number of

points along the surface of the scatterer. Sufficient points

are selected to represent the shape of the scatterer.
These three methods may be extended to more compli-

cated scattering problems. Their accuracy is excellent

when a sufhciently large set of linear equations is solved.

However, each method may have two problems when very

complicated inhomogeneous scatterers like body organs

are considered. First, programming a complex scatterer

requires the (possibly lengthy) derivation of a set of linear

equations appropriate only for that scatterer. Second,

solution of such a problem with high accuracy may require

such a large, dense matrix to be inverted that the available

fast, direct access computer storage is exhausted. As a

comparison with the 80-by-80 matrix of Wu and Tsai, the

maximum size dense matrix solvable using direct access

storage, on the Northwestern University CDC 6400, is 400

by 400 [5].

The numerical method discussed in this paper is a time-

domain approach, which treats the irradiation of the

scatterer as an initial value problem. At t = O, a plane-

wave source of frequency j is assumed to be turned on. The

propagation of waves from this source is simulated by solv-

ing a finite-difference analog of the time-dependent Max-

well’s equations on a lattice of points, including the scat-

terer. Time stepping is continued until the sinusoidal

steady state is achieved at each point. The field envelope,

or maximum absolute value, during the final half-wave

cycle of time stepping is taken as the magnitude of the

phasor of the steady-state field.

This method has two advantages relative to frequency-

domain approaches. First, and most important, it is simple

to implement for complicated scatterers, because arbitrary

dielectric parameters may be assigned to each lattice
point. Second, its memory requirement is not prohibitive

for many scatterers of interest. For example, the North-

western computer can process a 125-by-250-point grid for

two-dimensional problems, or a 20-by-20-by-40-point

lattice for three-dimensional problems, without resorting

to noncore storage. This is sufficient, using symmetry, to

process a 12-wavelength-diam cylinder or a 2-wavelength-

diam sphere.
This method has two disadvantages relative to fre-

quency-domain approaches. First, its accuracy is only

about &10 percent, which is at least one order of magnitude

worse than that of the other methods. Second, the required

program execution time may be excessive for some com-

puter budgets. Typically, a two-dimensional problem

solved on a 25-by-50-point grid, requires 1 min (at a rate

of about 10 s/100 time steps). A three-dimensional prob-

lem solved on a 20-by-20-by-40-point lattice, requires 30

min (at a rate of about 5 min/100 time steps).

The important elements of the initial-value-problem

approach to scattering problems are discussed below.

II. THE YEE ALGORITHM [6]

Using the MKS system of units, and assuming that the

dielectric parameters P, e, and a are independent of time,

the following system of scalar equations is equivalent to

Maxwell’s equations in the rectangular coordinate system

(X,y,z) :

(la)

%=%%%3 (lb)

(lC)’

dEz

(

1 aHz aHu—— —_ uEZ
at=; ay a.z ) (id)

dEv

(

1 dH. r3H.—= .— .— _
at 6 az ax )

WEU (le)

aEz (1 aHu aH.—= . —_ —_
at E )

uEz .
ax ay

(if)

Yee introduces a set of finite-difference equations for the

system of (la) – ( lf ). Following Yee’s notation, we denote

a space lattice point as

(i,j,ft) = (ifi,j$ka) (2)

and any function of space and time as

Fn(i,j,lc) = F(i6,j&k6,n3t) (3)

where B8 = 8X = 6V = & is the space increment, and M is

the time increment. Yee uses finite difference expressions

for the space and time derivatives that are both simply

programmed and second-order accurate in 6 and in tit,re-
spectively,

ilF”(i,j,k) Fn(i + ~,j,lc) – Fn(i – ~,j,k)

ax = 8
+ 0(8’) (4)

dFn(i,j,k) = J%+112 (i,j,k) – F“-’/’(i,j,k) + O(ap)

at M
(5)

To achieve the accuracy of,(4), and to realize all of the

space derivatives of (la) –(if ), Yee positions the compo-

nents of ~ and ~ about a unit cell of the lattice as shown
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in Fig. 1. To achieve the accuracy of (5), he evaluates E

and ~ at alternate half-time steps. The restit of these

assumptions is the following system of finite-difference

equations for the system of (la) – ( lf ) :

Hm”+’lz (i,j + ;,k + ;)

[

Eun(i,j + ;,k + 1) – Eg”(i,j + ~,lc) +
.

E.n(i,j,k + ~) – E.n(i,j + l,k + ~) 1

HU~+U2(i + ~,j,ii + ~)

[

E.n(i + l,j,k + ~) – E,”(i,j,k + ~) +
.

E.n(i + ~,j,k) – E.n (i + $,j,k + 1) 1Hz.+lh(i+~,j+%,~)

[

Ean(i + ~,j + l,k) - E.n(i + ~,j,k) +
.

Eg”(i,~ + ~,k) – Eti”(i + l,j + ~,k) 1

li.”+l(i + *,j,k)

(6a),

(6b)

(6c)

[

= ~ _ fr(i + +,j,k) M

1
-%n(i + i$,j,k) +

at

6(; + +,j,k) e(i + ?j,j,k)6

[

H.n+l/2(i + ~,j + ~,k) – Hgn+l/2(i + ~,j – ~,k) +
.

Hun+’/’(i + ~,j,k – ~) – Hun+’/2(i + ~,j,lc + ~) 1

(6d)

I!%” +l(i,j + *,k)

LH.”+u2(i - ~,j + ~,k) - Hzn+l/2(i + ~,j + ~,k) ]

(6e)

Ezn+’(i,j,k + ~)

“HU+IIZ (~ + +,j,k +;) – HY”+’l’ (i – ~,j,k + ~) +

,H.”+’/2(i,j – *J+ ~) – H.”+112(i,j + ~,k + %) 1

(6f)

625

x
/

Fig. 1. Positions of the field components about a unit cell of the
Yee lattice.

With the system of (6a)–(6f ), the new value of a field

vector component at any lattice point depends only on its

previous value and on the previous values cllf the compo-

nents of the other field vector at adjacent points. There-

fore, at any given time step, the computation of a field

vector may proceed one point at a time. Corn puter storage

must be’ provided for 11 quantities at each unit cell of the

lattice: the 6 field vector components, the values of c and U,

and the maximum I E. ], I Eu 1, and I E. I achieved during

the final half-wave cycle of time stepping.

The choice of 6 and M is motivated by t Ihe reasons of

accuracy and stability, respectively. To ensure the accuracy

of the computed results, 6 must be taken as a small frac-

tion of either the minimum. wavelength expected in the

model or the minimum scatterer dimension. Thus the field

cannot change significantly over one space increment, and

the cubic lattice approximation to the smooth scatterer

surface cannot be too coarse. To ensure the stability of the

time-stepping algorithm of (6a) – (6f ), tit is chosen to satisfy

/. . . \ _l,~

(7)

where v~~ is the maximum wave phase velocity expected

within the model. The corresponding stability criterion

set forth by Yee in (7) and (8) of his paper is incorrect.

The derivation of (7) is outlined in the Appendix.

III. THE LATTICE TRUNCATION

CONDITIONS

A basic problem with any finite-difference solution of

Maxwell’s equations is the treatment of the field vector

components at the lattice truncation. Because of limited

computer storage, the lattice cannot cover a sufficient y

large portion of space so that the scattered wave at the

lattice truncation might be closely approximated. Neces-

sarily, the lattice must terminate close to the scatterer in

a region where the nature of the scattered wave is unknown.

Proper truncation of the lattice requires that any out-

going wave disappear at the lattice boundary without re-
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flection during the continuous time stepping of the al-

gorithm, Improper truncation results in error for all time

steps after the boundary wave reflections return to the

vicinity of the scatterer. This is exemplified by Yee’s fixing

of the field components at each truncation point at zero,

for all time steps. This ‘(hard” truncation condition does

not take into account the values of the fields of any pos-

sible outgoing wave and causes boundary reflections in a

way analogous to reflection at the surface of a conductor.

One way to achieve a “soft” lattice truncation is to as-

sign linearly increasing values of u near the lattice bound-

ary so that absorption of outgoing waves is achieved. How-

ever, for a small value of reflection, the distance over which

absorption takes place must be of the order .of one wave-

length. For many problems, this is an intolerable assign-

ment of computer storage to points not in the scatterer.

In addition, any incident wave propagating parallel to

such a lattice boundary must suffer dktortion due to the

variation of phase velocity along the wavefront. Therefore,

this type of truncation is not suitable.

A more desirable soft lattice truncation relates in a

simple way the values of the field components at the trun-

cation points to field component values at points one or

more 6 within the boundary. This is illustrated using the

one-dimensional lattice of Fig. 2, for the time-step relation

CM = 6

E=”(M) = Ez”-’(ikf – 1). (8a)

Equation (8a) simulates the free-space propagation of the

magnitude of E. from the point M — 1 to the truncation

point ill in one time step (the numerical propagation de-

lay implied by the time-step relation). This is an exact

truncation condition for the lattice of Fig. 2, in that all

possible + y-directed waves are absorbed at M without

reflection. If we wish to simulate the truncation of this

lattice in an infinite dielectric half-space of refractive index

m, (8a) is modified to

E.’(M) = E,”-(M – 1). (8b)

Unfortunately, no simple, exact soft truncation condition

analogous to (8a), (8b) is apparent for either the two-

or three-dimensional space lattices. This is because any

particular outgoing wave cannot be assumed to be plane

and normally incident on one lattice boundary plane. At

any truncation point, the local angle of incidence of this

Assumptions:

EX=EY=O; HY=HZ=O

A=.l=o
ax az

M- I

M-1 !4 LEZO _ Hx

Maxwell’s Equations:

dHx I dEz— . -—. —
at P ay
aEz I dHx

x “ -~” dy

,V*

t‘1

oL -

Fig. 2. One-dimensional lattic~til&strating a soft lattice truncation

wave, relative to the boundary, is unknown. Further,

several different waves having varying local angles of in-

cidence may arrive at the same time. No simple, single

truncation condition can account for all of these possibili-

ties. Therefore, we can arrive at only an approximate trun-

cation condition that reduces the effective lattice bound-

ary reflection coefficient to an acceptable level.

An example of a set of simple, approximate, soft lattice

truncation conditions is illustrated using the two-dimen-

sional lattice of Fig. 3, for the time-step relation cdt = ~~

E,n(i,O) = (E.n-’(i – 1,1) + E.n-’ (i)l)

+ E.”-’(i + 1,1)) /3 (9a)

llz”(i,49) = (Eg”-’(i – 1,48) + Ez”-2(i,48)

+ 13~”-2(i + 1,48) )/3 (9b)

~.”(ij) = (~,n-’(l%j – 1) + W-’(l+i)

+ Hyn-2 (l~,j+ 1)) /3 (9c)

Hwn (50~,j) = (H.”-’ (49~,j – 1) + H,”-’ (49%,j)

+ HV”-2(49~,j + 1)) /3. (9d)

Equations (9a) – (9d) allow the field value at any lattice

truncation point to rise to approach the field value of any

outgoing wave, thus lowering the effective reflection co-

efficient at the boundary. This is done by simulating the

propagation of an outgoing wave from the lattice plane

adjacent to the truncation, to the lattice plane at the trun-

cation, in a number of time steps corresponding to the

propagation delay. The averaging process is used to take

into account all possible local angles of incidence of the

outgoing wave at the lattice boundary, and possible multi-

ple incidence.

The effectiveness of (9a) – (9d) in reducing lattice

boundary reflections is illustrated in Fig. 4, which plots

the computed propagation of an outgoing cylindrical wave

in the grid of Fig. 3. The outgoing wave is a Gaussian pulse

originating from an excitation at grid point 25,24. The

pulse is approximately 200 ps long, and has a maximum

I E, ] = 1000.5 is set at 0.3 cm, and at is set at 5 ps. In

the figure, contours of constant E. are superimposed on

the left half of the grid (the right half is omitted because

of symmetry) at intervals of 20 time steps. The pulse

i

t
—8—

Assumptmns: 49

b++il

---

EX=EY. O; HZ=O
~ :Lx*V* ---

$“0 49 ---

Maxwsll’s Equatmns:

dHx

x-

‘: +&+iLP

‘F ay
dHY

T“

dEz
—.
af

+(*_~_rEz) ok, ‘, ,V* --- 49W* ~ g@..

Fig. 3. Two-dimensional lattice, illustrating a set of approximate
soft lattice truncation conditions.
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I?ig. 4. Propagation of an outgoing cylindrical wave in the grid of
Fig. 3.

appears to propagate off the edges of the grid, as desired,

with only slight distortion of the nominal cylindrical

shape. The residual field magnitude in Fig. 4(e) (f) is

about one order of magnitude less than the peak outgoing

fields at the grid boundaries in Fig. 4(c) (d). Further, the

residual field continues to propagate off the grid. This

example shows that (9a) – (9d) reduce grid-boundary re-

flection to the point where a first-order correct solution of

continuous irradiation scattering problems is feasible.
Truncation conditions (9a) –(9d) are useful for an as-

sumed y-directed incident plane wave, with field compo-

nents Ez and Hz for scattering problems. First, (9a) and

(9b) reduce to an exact truncation, similar to (8a), for

such a wave. Second, (9c) and (9d) have no effect on the

propagation of such a wave, which lacks an HV component.

Therefore, this lattice truncation effectively makes the

lattice boundary invisible to a y-directed incident plane

wave.

IV. THE PLANE-WAVE-SOURCE CONDITION

We now consider the simulation of a continuous, sinu-

soidal, incident plane wave for use in scattering problems.
The simplest approach is to vary the electric field at all

points along one endface of the lattice in a sinusoidal

manner. This lattice plane would then radiate the desired

plane wave. However, such a specification of field values

at a lattice boundary plane, without consideration of the

values of the fields of any possible outgoing scattered

627

waves, represents a hard lattice truncation condition and

would cause undesired reflections.

An example of a soft plane-wave-source condition is

illustrated using the two-dimensional lattice of Fig. 3

E.” (i,2) e 1000 sin (27rfndt) + E.’ (42). (10)

Equation (10) is a modification of the Maxwelll’s equations

algorithm for all points on the grid linej = 2. At each point

on this line, the computer first calculates II,” in the nbrinal

manner of the algorithm, and stores the value in memory.

Then the value of the sinusoid is calculated and added to

the stored value of E,n. Finally, this modified value of E.n

is stored in memory, In effect, (10) simulates the linear

superposition of a y-directed plane wave and the ambient

field along the grid line j = 2; (10) generatw the desired

sinusoidal, incident plane wave. But most importantly,

(10) permits any scattered, outgoing wave to propagate

right through the plane-wave source at j = 2 without re-

flection and reach the soft grid truncation at j = O to be

absorbed. This condition simulates a plane wave originat-

ing at infinity, and a scattered wave returning to infinity,

without permitting any interaction between the two waves

except at the scatterer.

V. THE SYMMETRY CONDITIONS

An important savings of computer memory and program

execution time results if even symmetry of the dielectric

scatterer about one or two lattice planes can be assumed.

An example of the programming of even scatterer symme-

try is illustrated using the two-dimensional lattice of Fig.

3. The scatterer is assumed to be evenly symmetric about

the grid line i = 25*

P,c,u(25i + I,j) = we,u(25% – I,j). (ha)

The incident radiation is assumed to be a +y-directed

plane wave. The incident field components E. and H, are

uniform in the z–z plane and thus naturally have even

symmetry about i = 25+. Therefore, the E, and H. com-

ponents of the total field must also possess even symmetry

about i = 25+

E.”, H.” (25+ + I,j) = E,”,H.” (25% – I,j). (llb)

Using the symmetry, the grid of Fig. 3 may lbe truncated

at the line i = 26. The required truncation condition

ll,”(26,j) = ll,”(25,j) (12)

allows calculation of the complete set of field components,

with full specification of the assumed symmetry of the

problem.

VI. RESULTS OF TWO-DIMENSIONAL

SCATTERING PROBLEMS

In this section, we shall present the computed results for

the internal electric field of a uniform, circular, dielectric

cylinder scatterer. The cylinder is assumed to be infinite

in the z direction. The incident radiation is amurned to be

a +y-directed TM wave of frequency 2.5 GHz. Because
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there is no variation of either scatterer geometry or in-

cident fields in the z direction, this problem maybe treated

as the two-dimensional scattering of the incident wave,

with only E,-, Hz-, and Hti-fields present. Thus the two-

dimensional gtid of Fig. 3 is used.
The geometry of the scatterer relative to the grid is illus-

trated in Fig. 5. The cylinder axis is chosen as the line

25~,24~,k, allowing symmetry condition (12) to be used to

truncate the grid at i = 26. Soft grid truncation conditions

(9a), (9b), and (9c) are used to tuncate the grid at j = O,

j = 49, and i = $, respectively. Soft plane-wave-source

condition (10) is used to generate the incident wave at

j = 2. The grid coordinates internal to the cylinder, deter-

mined by

((i – 25~)2 + (j – 24ij)2)’12 <20 (13)

are assigned the dielectric parameters ~a, ~, and ~& All

grid points outside of the cylinder are assigned the param-

eters of free, space. Equation (13) leads to a stepped-edge

approximation of the circular boundary of the scatterer.

The program is started by setting all field components of

the grid equal to zero. The plane-wave ;ource is activated

at n = 1, the first time step of the algorithm, and left on

during the entire run. The program is time stepped to

n~.. chosen large enough so that the sinusoidal steady

state is achieved.

The first cylinder scatterer program has the following

parameters: ed = JE07 Cd = 0, 6 = ().S cm = ~d/zO, 6L = 5

ps = ii/2c. The choice of ISimplies that the cylinder has a

radius equal to h& The choice of at implies that one wave

cycle requires 80 time steps of the algorithm. The computed

results of this program are detailed in Fig. 6(a), which

graphs the envelope of E.’ (25,j), and in Fig. 6(b), which

graphs the envelope of E,” ( 15,j) for 460< n <500 =

n~a~. The exact solution, calculated using the summed-

series technique of Jones [7], is plotted with each computed

solution for comparison. The computed solution locates the

positions of the peaks and nulls of the envelope of E,’

44

39

34

29

24

19

14

9

4

0 —1
151015’025

Magnitude of Incident Ez = 1000

Fig. 5. Geometry of the cylindrical dielectric scatterer relative to
the grid of Fig. 3.
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Fig. 6. Results of the first cylinder scatterer program.

with a maximum error of 44, or about *3 percent of the

diameter of the scatterer. The computed solution gives

the- magnitude of the envelope at each peak with a maxi-

mum error of +10 percent. The execution time is 50 s

using the CD(3 6400.1

The second cylinder scatterer program has the following

parameters: ~d = 4760, ad = 2.2 mho/m, 8 = 0.6 mm H
id/28, M = 1 ps = 13/2c. The choice of 8 implies that the

cylinder has a radius equal to ~~& The choice of M implies

that one wave cycle requires 400 time steps of the al-

gorithm. The dielectric parameters are chosen to simulate

human tissue with high water content. The radius of the

scatterer is chosen to equal that of the eyeball. The computed

results of this program are detailed in Fig. 7(a), which

graphs the envelope of E.” (25,j), and in Fig. 7 (b), which

graphs the envelope of E.” ( 15,j) for 400< n <600. The
exact solution is plotted with each computed solution for

comparison. The computed solution locates the positions

of the peaks and nulls of the envelope with a maximum

error of +38, or about *8 percent of the diameter of the

scatterer. The computed solution gives the magnitude of

the central peak of the envelope with an error of +5 per-

cent. The execution time is 60 s.
There are two main sources of error in the results of Figs.

6 and 7. The first is the imperfection of the soft grid trun-

cation of (9a)– (9c). The second is the stepped-edge ap-

1 The listing of the 134-card Fortran IV source deck is available
from the authors.
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Fig.7. Results of thesecond cylinder scatterer program.

proximationof the boundary of the scatterer. These error

sources decrease linearly withl at most. ’Overall, thesolu-

tions of Figs. 6 and 7 may be described as better than first-

order accurate. Comparable accuracy should be obtained
with arbitrary two-dimensional scatterers of the general

size of the cylinders examined. The only program modMca-

tion required is a specification of tihe dielectric parameters

of the arbitrary scatterer at each grid point.

VII. EXTENSION TO THREE-DIMENSIONAL

SCATTERERS

The solution of three-dimensional dielectric scattering

problems with this technique requires the full Yee algo-

rithm of (6a) – (6f ), in conjunction with the corresponding

lattice. A sufficiently accurate latticeatruncation condition,

similar to (9a) – (9d), is formulated. For this case, care

must be taken in setting the truncation condition to avoid

algorithm instability. This may be seen by considering the

application of (7) to a cubic lattice in two or three dimen-

sions

M < ;> = o.7071?/c (2 dimensions) (14a)

APPENDIX

DERIVATION OF THE STABILITY

CRITERION

For convenience, we consider a normalized region of

space with w = 1, e = 1, u = O, and c = 1. Letting j =

(– 1) 112,we rewrite Maxwell’s equations as

jvx(E+jE)=:(E+jE’) (15a)

or more simply as

The stability of a particular numerical representation of

( 15b) can be examined simply by considering the follow-

ing pair of eigenvalue problems:

a
P=kv

%
(16a)

numer ica I

j V ln~merical X V = ~V. (16b)

Using the numerical time derivative of (5), (16a) yields

p.+1/2 _ p.–l/2

= ~-p .

at
(17)

Defining a solution growth factor q = ~“+’12/ ~“, and

substituting into (17), we solve for q

q = W2 + (1 + (Mt/2)91/2. (18)

Algorithm stability requires that I q I <1 for all possible

spatial modes in the lattice, For this to occur

Rek=O lIm Al <2/tit. (19)

We now let

P (l,m,n) = PiJexp [j(k,l~x + lcvm6y + kgndz) ] (20)

represent an arbitrary lattice spatial mode. Using the

numerical space derivative formulation of (4), ( 16b)

yields

X 7(l,m,n) = k~(l,m,jt). (21)

After performing the cross product and writing the x, y, and

z component equations, the resulting system is solved for
~2

CM< ~ = o.57713/c (3 dimensions).
( )

(14b) X2 . –4 ‘in2 j~y) + ‘in2 jy) + ~~ .
cd

If, for convenience in programming the truncation condi- (22)

tion, the relation at= 0.56/c is used for both lattices, the

three-dimensional lattice algorithm is closer to instability.
For all possible iiz, kv, and k,

Therefore, any perturbation of the basic algorithm with a

soft lattice truncation is more likely to lead to instability Rek=O lIm Al<2
(

1 ‘“. (23);2++2+G
)

in the three-dimensional case. This has been borne out

by preliminary efforts in the programming of this case. To satisfy stability condition (19) for the arbitrary lattice
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spatial mode, we set

(24)

The algorithm stability condition follows immediately

from (24). In an inhomogeneous region of space, it is dif-

ficult to determine a spectrum of 1 analogous to (23) for

all possible lattice spatial modes. For absolute algorithm

stability, (7) suffices because it represents a “worst case”

choice of M.
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Worst Case Network Tolerance Optimization

JOHN W. BANDLER, SENIOR MEMBER, IEEE, PETER C. LIU, STUDENT MEMBER, IEEE, AND

JAMES H. K. CHEN, STUDENT MEMBER, IEEE

Absfracf—The theory and its implementation in a new user-

oriented computer program package is described for solving con-

tinuous or discrete worst case tolerance assignment problems

simultaneously with the selection of the most favorable nominal

design. Basically, the tolerance problem is to ensure that a desi~

sub ject to specified tolerances will meet performance or other

specifications. Our approach, which is believed to be new to the

microwave design area, can solve a variety of tolerance and related

problems. Dakin’s tree search, a new quasi-Newton minimization

method, and least pth approximation are used. The program itself

is organized such that future additions and deletions of performance

specifications and constraints, and replacement of cost functions

and optimization methods are readily realized. Options and default

values are used to enhance flexibility. The full Fortrsn listing of the

program and documentation will be made available.
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I. INTRODUCTION

A NEW user-oriented computer program package called

TOLOPT (ToLerance omirnization) is presented which

can solve continuous or discrete worst case tolerance

assignment problems simultaneously with the selection of

the most favorable nominal design, taking full advantage

of the most recent developments in optimization practice.

Our approach, it is believed, is new to the microwave

design area. Previous design work has usually. been con-

centrated on obtaining a best nominal design, disregarding

the manufacturing tolerances and material uncertainties.

Basically, the tolerance assignment problem is to ensure

that a design, when fabricated, will meet performance or

other specifications.

The package is designed to handle the objective func-

tions, performance specifications, and parameter con-

straints in a unified manner such that any of the nominal

values or tolerances (relative or absolute) can be fixed or

varied automatically at the user’s discretion. Time-saving

techniques for choosing constraints (vertices selection)

are incorporated. The routine involved also checks assump-


