IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, No. 8, AUGUsT 1975

tion of radiation from wire antennas on conducting bodies,”
IEEE Trans. Antennas Propagat., vol. AP-22, pp. 200-206,
Mar. 1974.

[62] D. S. Jones, “Truncation error in the solution of integral equa-
tions,” Proc. Roy. Soc. Edinburgh, vol. 71, pp. 263-273, Sept.

1973.

[63] a) R. F. Harrington and J. R. Mautz, “Theory of characteristic
modes for condueting bodies,” IEEE Trans. Antennas Propagat.,
vol. AP-19, pp. 622-628, Sept. 1971.

b) , “Computation of characteristic modes for conducting

bodies,” ibid., vol. AP-19, pp. 629-639, Sept. 1971.

[64] A. Hizal and Z. Yasa, ‘“‘Scattering by perfectly conducting
rotational bodies of arbitrary form excited by an obliquely
incident plane wave or by a Yinear antenna,” Proc. Inst. Elec.
Eng., vol. 120, pp. 181-182, Feb. 1973.

[65] B. A. Howarth and T. J. F. Pavlasek, ‘“Multipole induction: A
novel formulation of multiple scattering of scalar waves,”
J. Appl. Phys., vol. 44, pp. 1162-1167, Mar. 1973.

[66] J.-C. Bolomey and W. Tabbara, ‘“Numerical aspects on cou-

623

pling between complementary boundary value problems,”
IEEE Trans. Antennas Propagat., vol. AP-21, pp. 356-363,
May 1973.

[67] D. 8. Jones, “Integral equations for the exterior acoustic prob-
l%n;,” Quart. J. Mech. Appl. Maih., vol. 27, pp. 129-142, Feb.
1974.

{68] L. Marin, “Natural-mode representation of transient scatter-
ing from rotationally symmetric bodies,” IEEE Trans. Antennas
Propagat., vol. AP-22, pp. 266274, Mar. 1974.

[69] F. M. Tesche, “Transient response of a thin-wire antenna or
scatterer near a conducting ground plane,” IEEE Trans.
Antennas Propagat. (Succinet Papers), vol. AP-22, pp. 352-355,
Mar. 1974.

[70] 1. A. Cermak et al., “The status of computer-oriented micro-
wave practices,” IEEE Trans. Microwave Theory Tech. (Special
Issue on Computer-Oriented Microwave Practices), vol. MTT-22,
pp. 1556-160, Mar. 1974.

{71] D. S. Jones, ‘“Numerical methods for antenna problems,” Proc.
Inst. Elec. Eng., vol. 121, pp. 573-582, July 1974.

Numerical Solution of Steady-State Electromagnetic

Scattering Problems Using the Time-Dependent

Maxwell’s Equations
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Abstract—A numerical method is described for the solution of the
electromagnetic fields within an arbitrary dielectric scatterer of
the order of one wavelength in diameter. The method treats the
irradiation of the scatterer as an initial value problem. At ¢ = 0,
a plane-wave source of frequency f is assumed to be turned on.
The diffraction of waves from this source is modeled by repeatedly
solving a finite-difference analog of the time-dependent Maxwell’s
equations. Time stepping is continued until sinusoidual steady-state
field values are observed at all points within the scatterer. The en-
velope of the standing wave is taken as the steady-state scattered
field. As an example of this method, the computed results for a
dielectric cylinder scatterer are presented. An error of less than
+10 percent in locating and evaluating the standing-wave peaks
within the cylinder is achieved for a program execution time of 1 min.
The extension of this method to the solution of the fields within
three-dimensional dielectric scatterers is outlined.

I. INTRODUCTION

HE accurate determination of the electromagnetic
fields within an arbitrary, inhomogeneous, dielectric
scatterer is both an important theoretical problem and a
practical objective of workers investigating the effects of
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microwaves upon living tissue. Exact analytical solutions
are obtained only for simple scatterers like the sphere and
the circular cylinder, which may be solved using separa-
tion of variables. For complicated scatterers like most body
organs, we must resort to some numerical method if an
accurate model is to be examined.

The computer techniques relevant to this problem that
have appeared in the literature may be called, as a class,
frequency-domain methods. These methods are based upon
the assumption of an exp (72xft) time dependence in the
fundamental Maxwell’s equations. In general, methods of
this type derive a set of linear equations for either field
variables or field expansion coefficients, and then solve the
linear system with a suitable matrix-inversion scheme.

‘Wu and Tsai [1] solve two-dimensional seattering by an
arbitrary dielectric cylinder. They develop 4 coupled in-
tegral equation pair for the electric field and its normal
derivative at the surface of the scatterer. They then derive
a corresponding set of linear equations for the surface
fields using the moment method of Harrington [27]. Solu-
tion of this set of equations allows computation of the in-
terior fields using Huygens’ integrals. This method allows
the very accurate solution of a homogenecus dielectric
cylinder, about one free-space wavelength in circumference,
by inverting an 80-by-80 matrix.
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MecDonald and Wexler [3] solve a two-dimensional radi-
ating antenna with dielectric obstacles. They employ a
finite-element solution of the Helmholtz equation within
a restricted region, and use an integral equation constraint
along the contour of this region to take into account the
unbounded exterior. Solution is obtained by inverting a 60-
by-60 matrix.

Wilton and Mittra [4] solve two-dimensional scattering
by an arbitrary dieleetric ¢ylinder. They expand the fields
inside and outside of the scatterer in terms of free-space-
type wave functions, wherever valid, and in terms of the
analytic continuation of these wave functions, wherever re-
quired. The unknown set of coefficients is determined by
enforcing the field boundary conditions at a number of
points along the surface of the scatterer. Sufficient points
are selected to represent the shape of the scatterer.

These three methods may be extended to more compli-
cated scattering problems. Their accuracy is excellent
when a sufficiently large set of linear equations is solved.
However, each method may have two problems when very
complicated inhomogeneous scatterers like body organs
are considered. First, programming a complex scatterer
requires the (possibly lengthy) derivation of a set of linear
equations appropriate only for that scatterer. Second,
solution of such a problem with high accuracy may require
such a large, dense matrix to be inverted that the available
fast, direct access computer storage is exhausted. As a
comparison with the 80-by-80 matrix of Wu and Tsai, the
maximum size dense matrix solvable using direct access
" storage, on the Northwestern University CDC 6400, is 400
by 400 [5].

The numerical method discussed in this paper is a time-
domain approach, which treats the irradiation of the
scatterer as an initial value problem. At ¢ = 0, a plane-
wave source of frequency f is assumed to be turned on. The
propagation of waves from this source is simulated by solv-
ing a finite-difference analog of the time-dependent Max-
well’s equations on a lattice of points, including the scat-
terer. Time stepping is continued until the sinusoidal
steady state is achieved at each point. The field envelope,
or maximum absolute value, during the final half-wave
cycle of time stepping is taken as the magnitude of the
phasor of the steady-state field.

This method has two advantages relative to frequeney-
domain approaches. First, and most important, it is simple
to implement for complicated scatterers, because arbitrary
dielectric parameters may be assigned to each lattice
point. Second, its memory requirement is not prohibitive
for many scatterers of interest. For example, the North-
western computer can process a 125-by-250-point grid for
two-dimensional problems, or a 20-by-20-by-40-point
lattice for three-dimensional problems, without resorting
to noncore storage. This is sufficient, using symmetry, to
process a 12-wavelength-diam eylinder or a 2-wavelength-
diam sphere.

This method has two disadvantages relative to fre-
quency-domain approaches. First, its accuracy is only
about +10 percent, which is at least one order of magnitude
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worse than that of the other methods. Second, the required
program execution time may be excessive for some com-
puter budgets. Typically, a two-dimensional problem
solved on a 25-by-50-point grid, requires 1 min (at a rate
of about 10 s/100 time steps). A three-dimensional prob-
lem solved on a 20-by-20-by-40-point lattice, requires 30
min (at a rate of about 5 min/100 time steps).

The important elements of the initial-value-problem
approach to seattering problems are discussed below.

II. THE YEE ALGORITHM [6]

Using the MKS system of units, and assuming that the
dielectric parameters u, ¢, and ¢ are independent of time,
the following system of scalar equations is equivalent to
Maxwell’s equations in the rectangular coordinate system

(z,9,2) :
oH, 1 (6E’,, aE’z) (1a)
=—f — - a
at u\ 0z 9y
Q{-Ii, _ 1(6Ez _ oEx> (1b)
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Yee introduces a set of finite-difference equations for the
system of (1a)—(1f). Following Yee’s notation, we denote
a space lattice point as

(44,k) = (18,78,kd) (2)
and any function of space and time as
F*(2,7,k) = F(48,78,kd,ndt) (3)

where -6 = 8z = 8y = 8z is the space increment, and &8¢ is
the time increment. Yee uses finite difference expressions
for the space and time derivatives that are both simply
programmed and second-order accurate in & and in &, re-
spectively,

aF”(%]:"’) _ Fn(@ + %:]7’6) - F”(@ _ %)]7’6)
o 8

+0@) (4

OF"(v,3,k)  Frii2(3,4.k) — Fr22(4,5,k)
at B ot

+0e®). (5
To achieve the accuracy of (4), and to realize all of the
space derivative§ of (1a)—(1f), Yee positions the compo-
nents of £ and H about a unit cell of the lattice as shown
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in Fig. 1. To achieve the accuracy of (5), he evaluates £
and A at alternate half-time steps. The result of these
assumptions is the following system of finite-difference
equations for the system of (1a)—(1f):
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Fig. 1. Positions of the field components about a unit cell of the

Yee lattice.

With the system of (6a)—(6f), the new value of a field
vector component at any lattice point depends only on its
previous value and on the previous values of the compo-
nents of the other field vector at adjacent points. There-
fore, at any given time step, the computation of a field
vector may proceed one point at a time. Computer storage
must be provided for 11 quantities at each unit cell of the
lattice: the 6 field vector components, the values of ¢ and o,
and the maximum | E, |, | B, |, and | K, | achieved during
the final half-wave cycle of time stepping.

The choice of § and 8¢ is motivated by the reasons of
accuracy and stability, respectively. To ensure the accuracy
of the computed results, 5§ must be taken as a small frac-
tion of either the minimum.wavelength expected in the
model or the minimum secatterer dimension. Thus the field
cannot change significantly over one space increment, and
the cubic lattice approximation to the smooth scatterer .
surface cannot be too coarse. To ensure the stability of the
time-stepping algorithm of (6a)—(6f), 8t is chosen to satisfy

1,1 1\
ms.xat <l|l— - o ~ o
Pmest? = (w ot >

822

(7)

where vx.x is the maximum wave phase velocity expected
within the model. The corresponding stability ecriterion
set forth by Yee in (7) and (8) of his paper is incorrect.
The derivation of (7) is outlined in the Appendix.

III. THE LATTICE TRUNCATION
CONDITIONS

A basic problem with any finite-difference solution of
Maxwell’s equations is the treatment of the field vector
components at the lattice truncation. Because of limited
computer storage, the lattice cannot cover a sufficiently
large portion of space so that the scattered wave at the
lattice truneation might be closely approximated. Neces-
sarily, the lattice must terminate close to the scatterer in
a region where the nature of the scattered wave is unknown.

Proper truncation of the lattice requires that any out-
going wave disappear at the lattice boundary without re-
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flection during the continuous time stepping of the al-
gorithm, Improper truncation results in error for all time
steps after the boundary wave reflections return to the
vicinity of the scatterer. This is exemplified by Yee’s fixing
of the field components at each truncation point at zero,
for all time steps. This ‘“hard” truncation condition does
not take into account the values of the fields of any pos-
sible outgoing wave and causes boundary reflections in a
way analogous to reflection at the surface of a conductor.

One way to achieve a “soft” lattice truncation is to as-
sign linearly increasing values of o near the lattice bound-
ary so that absorption of outgoing waves is achieved. How-
ever, for a small value of reflection, the distance over which
absorption takes place must be of the order of one wave-
length. For many problems, this is an intolerable assign-
ment of computer storage to points not in the scatterer.
In addition, any incident wave propagating parallel to
such a lattice boundary must suffer distortion due to the
variation of phase velocity along the wavefront. Therefore,
this type of truncation is not suitable.

A more desirable soft lattice truncation relates in a
simple way the values of the field components at the trun-
cation points to field component values at points one or
more § within the boundary. This is illustrated using the
one-dimensional lattice of Fig. 2, for the time-step relation
cdt =06

E (M) = E;»Y(M — 1).

Equation (8a) simulates the free-space propagation of the
magnitude of E, from the point M — 1 to the truncation
point M in one time step (the numerical propagation de-
lay implied by the time-step relation). This is an exact
truncation condition for the lattice of Fig. 2, in that all
possible +y-directed waves are absorbed at M without
reflection. If we wish to simulate the truncation of this
lattice in an infinite dielectric half-space of refractive index
m, (8a) is modified to

Es(M) = E~m(M — 1).

(8a)

(8b)

Unfortunately, no simple, exact soft truncation condition
analogous to (8a), (8b) is apparent for either the two-
or three-dimensional space lattices. This is because any
particular outgoing wave cannot be assumed to be plane
and normally incident on one lattice boundary plane. At
any truncation point, the local angle of incidence of this

My
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Fig. 2. One-dimensional lattice, illustrating a soft lattice truncation
at

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1975

wave, relative to the boundary, is unknown. Further,
several different waves having varying local angles of in-
cidence may arrive at the same time. No simple, single
truncation condition ecan account for all of these possibili-
ties. Therefore, we can arrive at only an approximate trun-
cation condition that reduces the effective lattice bound-
ary reflection coeflicient to an acceptable level.

An example of a set of simple, approximate, soft lattice
truncation conditions is illustrated using the two-dimen-
sional lattice of Fig. 3, for the time-step relation ¢t = 38

E»(10) = (B2 — 1,1) + E2(3,1)

+E 2+ L1))/3 (9a)

E~(1,49) = (B 2(i — 1,48) + E,"(i,48)
+ B (0 + 1,48)) /3 (9b)

Hp(35) = Hy2(13 — 1D 4 Hyr~(139)
+ Hy 2 (15,5 + 1)) /3 (9¢)

H,(505,5) = (Hy 724955 — 1) -+ Hy"*(493,5)

+ H,2(495,5 + 1)) /3. (9d)

Equations (9a)—(9d) allow the field value at any lattice
truncation point to rise to approach the field value of any
outgoing wave, thus lowering the effective reflection co-
efficient at the boundary. This is done by simulating the
propagation of an outgoing wave from the lattice plane
adjacent to the truncation, to the lattice plane at the trun-
cation, in a number of time steps corresponding to the
propagation delay. The averaging process is used to take
into account all possible local angles of incidence of the
outgoing wave at the lattice boundary, and possible multi-
ple incidences.

The effectiveness of (9a)—(9d) in reducing lattice
boundary reflections is illustrated in Fig. 4, which plots
the computed propagation of an outgoing cylindrical wave
in the grid of Fig. 3. The outgoing wave is a Gaussian pulse
originating from an excitation at grid point 25,24. The
pulse is approximately 200 ps long, and has a maximum
| E, | = 1000. & is set at 0.3 cm, and 8¢ is set at 5 ps. In
the figure, contours of constant E, are superimposed on
the left half of the grid (the right half is omitted because
of symmetry) at intervals of 20 time steps. The pulse

i

!

— 3
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Fig. 3. Two-dimensional lattice, illustrating a set of approximate
soft lattice truncation conditions.
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Fig. 4. Propagation of an outgoing cylindrical wave in the grid of
Fig. 3.

appears to propagate off the edges of the grid, as desired,
with only slight distortion of the nominal cylindrical
shape. The residual field magnitude in Fig. 4(e) (f) is
about one order of magnitude less than the peak outgoing
fields at the grid boundaries in Fig. 4(¢) (d). Further, the
residual field continues to propagate off the grid. This
example shows that (9a)—(9d) reduce grid-boundary re-
flection to the point where a first-order correct solution of
continuous irradiation scattering problems is feasible.

Truneation conditions (9a)—(9d) are useful for an as-
sumed y-directed incident plane wave, with field compo-
nents E, and H, for scattering problems. First, (9a) and
(9b) reduce to an exact truncation, similar to (8a), for
such a wave. Second, (9¢) and (9d) have no effect on the
propagation of such a wave, which lacks an H, component.
Therefore, this lattice truncation effectively makes the
lattice boundary invisible to a y-directed incident plane
wave.

1V. THE PLANE-WAVE-SOURCE CONDITION

We now consider the simulation of a continuous, sinu-
soidal, incident plane wave for use in scattering problems.
The simplest approach is to vary the electric field at all
points along one endface of the lattice in a sinusoidal
manner. This lattice plane would then radiate the desired
plane wave. However, such a specification of field values
at a lattice boundary plane, without consideration of the
values of the fields of any possible outgoing scattered
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waves, represents a hard lattice truncation condition and
would cause undesired reflections.

An example of a soft plane-wave-source condition is
illustrated using the two-dimensional lattice of Fig. 3

E7(3,2) « 1000 sin (2nfndt) + E»(4,2).  (10)

Equation (10) is a modification of the Maxwell’s equations
algorithm for all points on the grid linej = 2. At each point
on this line, the computer first caleulates £, in the normal
manner of the algorithm, and stores the valuein memory.
Then the value of the sinusoid is calculated and added to
the stored value of E,*. Finally, this modified value of E.»
is stored in memory, In effect, (10) simulates the linear
superposition of a y-directed plane wave and the ambient
field along the grid line j = 2; (10) generates the desired
sinusoidal, incident plane wave. But most importantly,
(10) permits any scattered, outgoing wave 1,0 propagate
right through the plane-wave source at 7 = 2 without re-
flection and reach the soft grid truncation at 7 = 0 to be
absorbed. This condition simulates a plane wave originat-
ing at infinity, and a scattered wave returning to infinity,
without permitting any interaction between the two waves
except at the scatterer.

V. THE SYMMETRY CONDITIONS

An important savings of computer memory and program
execution time results if even symmetry of the dielectric
scatterer about one or two lattice planes can be assumed.
An example of the programming of even scatterer symme-
try is illustrated using the two-dimensional lattice of Fig.
3. The scatterer is assumed to be evenly symmetric about
the grid line 7 = 25%

”76’0(25% + I;J) = l~")570'(25% e I;])

The incident radiation is assumed to be a +y-directed
plane wave. The incident field components E. and H., are
uniform in the z—z plane and thus naturally have even
symmetry about ¢ = 253. Therefore, the E. and H, com-
ponents of the total field must also possess even symmetry
about ¢ = 25%

Ezn7Hmn<25% + I:J) = E/‘,H,"(Z-S% - jr)j)~

(11a)

(11b)

Using the symmetry, the grid of Fig. 3 may be truncated
at the line ¢ = 26. The required truncation condition

E(26,) = E."(25,5) (12)

allows calculation of the complete set of field components,
with full specification of the assumed symmetry of the
problem.

VI. RESULTS OF TWO-DIMENSIONAL
SCATTERING PROBLEMS

In this section, we shall present the computed results for
the internal electric field of a uniform, circular, dielectric
cylinder scatterer. The cylinder is assumed to be infinite
in the z direction. The incident radiation is assumed to be
a +y-directed TM wave of frequency 2.5 GHz. Because

\
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there is no variation of either scatterer geometry or in-
cident fields in the z direction, this problem may be treated
as the two-dimensional scattering of the incident wave,
with only E,-, H,-, and H,fields present. Thus the two-
dimensional grid of Fig. 3 is used.

The geometry of the scatterer relative to the grid is illus-
trated in Fig. 5. The cylinder axis is chosen as the line
25%,241 k, allowing symmetry condition (12) to be used to
truncate the grid at ¢ = 26. Soft grid truncation conditions
(9a), (9b), and (9¢) are used to tuncate the grid at ;7 = 0,
j =49, and ¢ = 3, respectively. Soft plane-wave-source
condition (10) is used to generate the incident wave at
j = 2. The grid coordinates internal to the cylinder, deter-
mined by ‘

((6—265)*+ ( — 249))"* < 20 (13)

are assigned the dielectric parameters e;, w, and oz All
grid points outside of the cylinder are assigned the param-
eters of free space. Equation (13) leads to a stepped-edge
approximation of the circular boundary of the scatterer.
The program is started by setting all field components of
the grid equal to zero. The plane-wave source is activated
at n = 1, the first time step of the algorithm, and left on
during the entire run. The program is time stepped to
Timax Chosen large enough so that the sinusoidal steady
state is achieved.

The first cylinder scatterer program has the following
parameters: e = 4e, 04 = 0,8 = 0.3 cm = 2;/20,6t = 5
ps = 8/2c. The choice of § implies that the cylinder has a
radius equal to As. The choice of 8 implies that one wave
cycle requires 80 time steps of the algorithm. The computed
results of this program are detailed in Fig. 6(a), which
graphs the envelope of E.*(25,5), and in Fig. 6(b), which
graphs the envelope of E,*(15,7) for 460 < n < 500 =
fmax. The exact solution, calculated using the summed-
series technique of Jones [7], is plotted with each computed
solution for comparison. The computed solution locates the
positions of the peaks and nulls of the envelope of E,

43

a4 |-

39 -

34|

29 -

Dielectric
Cylinder

Magnitude of Incident Ez =1000

Fig. 5. Geometry of the cylindrical dielectric scatterer relative to
the grid of Fig. 3.
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Fig. 6. Results of the first cylinder scatterer program.

with a maximum error of 43§, or about +3 percent of the
diameter of the scatterer. The computed solution gives
the magnitude of the envelope at each peak with a maxi-
mum error of 4-10 percent. The execution time is 50 s
using the CDC 6400.1

The second cylinder scatterer program has the following
parameters: ez = 47¢, o4 = 2.2 mho/m, § = 0.6 mm =~
\i/28, 8t = 1 ps = 8/2¢. The choice of 6 implies that the
cylinder has a radius equal to 2\s. The choice of §f implies
that one wave cycle requires 400 time steps of the al-
gorithm. The dielectric parameters are chosen to simulate
human tissue with high water content. The radius of the
scatterer is chosen to equal that of the eyeball. The computed
results of this program are detailed in Fig. 7(a), which
graphs the envelope of E,%(25,5), and in Fig.7(b), which
graphs the envelope of E.”(15,5) for 400 < n < 600. The
exact solution is plotted with each computed solution for
comparison. The computed solution locates the positions
of the peaks and nulls of the envelope with a maximum
error of +38, or about 48 percent of the diameter of the
scatterer. The computed solution gives the magnitude of
the central peak of the envelope with an error of 45 per-
cent. The execution time is 60 s.

There are two main sources of error in the results of Figs.
6 and 7. The first is the imperfection of the soft grid trun-
cation of (9a)—(9¢). The second is the stepped-edge ap-

t The listing of the 134-card Fortran IV source deck is available
from the authors.
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Fig. 7. Results of the seeond cylinder scatterer program.

proximation of the boundary of the scatterer. These error
sources decrease linearly with 8, at most. Overall, the solu-
tions of Figs. 6 and 7 may be described as better than first-
order accurate. Comparable accuracy should be obtained
‘with arbitrary two-dimensional scatterers of the general
size of the cylinders examined. The only program modifica-
tion required is a specification of the dielectric parameters
of the arbitrary scatterer at each grid point.

VII. EXTENSION TO THREE-DIMENSIONAL
SCATTERERS

The solution of three-dimensional dielectric scattering
problems with this technique requires the full Yee algo-
rithm of (6a)—(6f), in conjunction with the corresponding
lattice. A sufficiently accurate lattice truncation condition,
similar to (9a)—(9d), is formulated. For this case, care
must be taken in setting the truncation condition to avoid
algorithm instability. This may be seen by considering the
application of (7) to a cubic lattice in two or three dimen-
sions

3t < 55—,2_ = 0.7078/c (2 dimensions)  (14a)
8t < LN = 0.5778/c (3 dimensions).  (14b)
V3

If, for convenience in programming the truncation condi-
tion, the relation 8 = 0.58/c is used for both lattices, the
three-dimensional lattice algorithm is closer to instability.
Therefore, any perturbation of the basic algorithm with a
soft lattice truncation is more likely to lead to instability
in the three-dimensional case. This has been borne out
by preliminary efforts in the programming of this case.
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APPENDIX

DERIVATION OF THE STABILITY
CRITERION

For convenience, we consider a hormalized region of
space with p =1, e = 1, ¢ = 0, and ¢ = 1. Letting j =
(—1)¥2, we rewrite Maxwell’s equations as

. = . d -~ .
JV X (H +jE) = o (H +jE) (152)
or more simply as
jV XV =0V/ot where V =H +jE.  (15b)

The stability of a particular numerical representation of
(15b) can be examined simply by considering the follow-
ing pair of eigenvalue problems:

a - _
8—t V =2AV (16a)
numerical
jv Inumerical X [7 = )\V (16b)

Using the numerical time derivative of (5), (16a) yields
otz _ P2
ot

= A\V». (17)

Defining a solution growth factor ¢ = Vr+iiz/ 7 and
substituting into (17), we solve for ¢

g = Mt/2 = (1 4+ (\t/2)2)12. (18)

Algorithm stability requires that | ¢ | < 1 for all possible
spatial modes in the lattice. For this to occur
Rex=0 |Imx]| < 2/8t. (19)

We now let
V (i;m,n) = Voexp [j(kddx + kymdy + k.nde)]  (20)

represent an arbitrary lattice spatial mode. Using the
numerical space derivative formulation of (4), (16b)
yields
sin (3k.d2) sin (3k,0y) sin (3k.02)
-2 ’ 3
oz oy oz
X V(l,m,n)

= AV (I,m,n). (21)

After performing the cross product and writing the z, y, and
z component equations, the resulting system is solved for
>\2

sin? (k.00 sin? (5kyé sin? ($k.02
oo o (SR T )
(22)
For all possible k., ky,, and k.
1 1 1\
Rex=0 |[ImA\| S2<@+¢3—y2+5—z2> . (23)

To satisfy stability condition (19) for the arbitrary lattice
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spatial mode, we set

(Lo ke ) <2
sx &yt 622 T ot

The algorithm stability condition follows immediately
from (24). In an inhomogeneous region of space, it is dif-
ficult to determine a spectrum of X analogous to (23) for
all possible lattice spatial modes. For absolute algorithm
stability, (7) suffices because it represents a ‘‘worst case”
choice of 6t.

(24)
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Worst Case Network Tolerance Optimization
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JAMES H. K. CHEN, STUDENT MEMBER, IEEE

Abstract—The theory and its implementation in a new user-
oriented computer program package is described for solving con-
tinuous or discrete worst case tolerance assignment problems
simultaneously with the selection of the most favorable nominal
design. Basically, the tolerance problem is to ensure that a design
subject to specified tolerances will meet performance or other
specifications. Our approach, which is believed to be new to the
microwave design area, can solve a variety of tolerance and related
problems. Dakin’s tree search, a new quasi-Newton minimization
method, and least pth approximation are used. The program itself
is organized such that future additions and deletions of performance
specifications and constraints, and replacement of cost functions
and optimization methods are readily realized. Options and default
values are used to enhance flexibility. The full Fortran listing of the
program and documentation will be made available.

Manuscript received August 5, 1974; revised February 3, 1975.
This work was supported by the National Research Council of
Canada in part under Grant A 7239, and in part by a scholarship to
J. K. Chen.

J. W. Bandler is with the Group on Simulation, Optimization,
and Control and the Department of Electrical Engineering, Mec-
Master University Hamilton, Ont., Canada.

P. C. Liu was with the Department of Electrical Engineering,
MeceMaster University, Hamilton, Ont., Canada. He is now with
Bell-Northern Research, Verdun, P. Q., Canada.

J. H. K. Chen was with McMaster University, Hamilton, Ont.,
8anaga. He is now with Bell-Northern Research, Ottawa, Ont.,

anada.

I. INTRODUCTION

NEW user-oriented computer program package called
TOLOPT (TOLerance oprimization) is presented which

can solve continuous or discrete worst case tolerance
assignment problems simultaneously with the selection of
the most favorable nominal design, taking full advantage
of the most recent developments in optimization practice.
Our approach, it is believed, is new to the microwave

design area. Previous design work has usually been con-

centrated on obtaining a best nominal design, disregarding
the manufacturing tolerances and material uncertainties.
Basically, the tolerance assignment problem is to ensure
that a design, when fabricated, will meet performance or
other specifications.

The package is designed to handle the objective func-
tions, performance specifications, and parameter con-
straints in a unified manner such that any of the nominal
values or tolerances (relative or absolute) can be fixed or
varied automatically at the user’s discretion. Time-saving
techniques for choosing constraints (vertices selection)
are incorporated. The routine involved also checks assump-



